REGION F WATER PLANNING GROUP

March 15, 2018

EXISTING SURFACE WATER SUPPLIES

Region F Existing Surface Water Supplies

- TWDB Rules Require the use of Water Availability Model (WAM) Run 3
- Strict priority order
- Very few sources in Region F have availability under this analysis
- Two major river basins
 - Rio Grande
 - Colorado

Rio Grande River Basin Existing Surface Water Supplies

- TCEQ recently published a new version of the Rio Grande WAM
- Includes hydrology through end of 2000

Rio Grande Run-of River Supplies

Reservoir Supplies

Colorado River Basin Existing Surface Water Supplies

Texas Commission on

Environmental

Quality

- TCEQ recently published a new version of the Colorado WAM
- Includes hydrology through end of 2013
- Includes several changes
- Coordinating with TCEQ

Subordination

- Major surface water strategy in Region F
- Lower Colorado Basin (Region K) is subordinated to the Upper Colorado Basin (Region F) in the WAM
- Will be reevaluated for the 2021 Plan as part of the Task 5A authorization
- Plan to use a more updated version of the WAM
 - Hydrology extended through 2016
 - Expected to be available in April 2018

2016 Plan Existing Surface Water Supplies vs. Subordination Supplies

CURRENT GROUNDWATER SUPPLIES

REGION F GROUNDWATER

- BRIEF REVIEW OF JOINT PLANNING, DFCs, MAGs
- OVERVIEW OF AQUIFERS IN THE REGION F
- GROUNDWATER AVAILABILITY
- **REGION F APPROACH**

Brief History (Pre 2005)

- Regional Planning Groups set "Groundwater Availability"
- No requirement for neighboring Groundwater Conservation Districts to work together

HB 1763 (2005)

- Required Groundwater Conservation Districts to conduct "Joint Planning" in each Groundwater Management Area (set Desired Future Conditions)
- Basis for Groundwater Availability used in Regional Planning
- Resulted in consistency between policy goals and groundwater availability numbers

Joint Planning for Groundwater Management Areas (GMAs)

the balance test

Highest Practicable Level of Groundwater Production Conservation, Preservation, Protection, Recharging, and Prevention of Waste of Groundwater, and Control of Subsidence

DFC Considerations

DFCs, MAGs, Planning

- DFCs GCDs/Science
- MAGs TWDB/Science
- Strategies RWPGs

Adaptive Management

Why MAGs Matter

A m

Major Aquifers

Minor Aquifers

Non-Relevant Portions Major Aquifers

Refer TR

Non-Relevant Portions Minor Aquifers

CER

Groundwater Conservation Districts

CHER S

DFC / MAG TIMELINE

- DESIRED FUTURE CONDITIONS (DFCs) WERE PROVIDED TO THE TWDB BY GMAs IN 2016
- STATUS
 - GMA 2 COMPLETED
 - GMA 3 SOON?
 - GMA 7 Mid-Summer?
 - GMA 8 COMPLETED

2021 REGION F WATER PLAN GMA-2 AND GMA-8 MAGS

GMA-2 and GMA-8 MAGs

All values are in acre-feet per year

County	Old MAG 2020	New MAG 2020	Old MAG 2030	New MAG 2030	Old MAG 2040	New MAG 2040	Old MAG 2050	New MAG 2050	Old MAG 2060	New MAG 2060	Old MAG 2070	New MAG 2070	GMA
ANDREWS	15,985	26,256	14,569	22,694	12,905	21,114	10,907	20,093	8,268	19,359	n/a	18,793	2
BORDEN	1,020	1,743	1,020	1,600	1,020	1,536	1,020	1,498	1,020	1,473	n/a	1,456	2
HOWARD	3,075	21,424	2,731	18,980	2,731	17,853	2,731	17,227	2,703	16,870	n/a	16,655	2
MARTIN	13.570	63.471	13.570	51.134	13.140	43.869	12.299	39.801	12.277	37.218	n/a	35.433	2
BROWN	1,547	1,980	1,547	1,974	1,547	1,980	1,547	1,974	, 1,547	1,980	n/a	1,974	8

Note: The old MAG values for GMA-8 were taken from Run 10 results calculated by WSP (formerly LBG-Guyton) for GMA-8 (January, 2016).

- GMA-2 MAGs are significantly higher due to higher Ogallala values
- GMA-8 MAG total for Brown County is about 25 percent higher

FIGURE 4. MAP SHOWING REGIONAL WATER PLANNING AREAS, GROUNDWATER CONSERVATION DISTRICTS (ALSO KNOWN AS UNDERGROUND WATER CONSERVATION DISTRICT OR UWCD), COUNTIES, AND RIVER BASINS IN GROUNDWATER MANAGEMENT AREA 2.

Source: TWDB GAM RUN 16-028 MAG: MODELED AVAILABLE GROUNDWATER FOR THE OGALLALA, EDWARDS-TRINITY (HIGH PLAINS), AND DOCKUM AQUIFERS IN GROUNDWATER MANAGEMENT AREA 2

Andrews County

Borden County

Howard County

Martin County

GMA-2 (by aquifer)

All values are in acre-feet per year

County	All Aquifers 2020	All Aquifers 2030	All Aquifers 2040	All Aquifers 2050	All Aquifers 2060	All Aquifers 2070
ANDREWS	26,256	22,694	21,114	20,093	19,359	18,793
BORDEN	1,743	1,600	1,536	1,498	1,473	1,456
HOWARD	21,424	18,980	17,853	17,227	16,870	16,655
MARTIN	63,471	51,134	43,869	39,801	37,218	35,433

County	Ogallala/ ETHP 2020	Ogallala/ ETHP	Ogallala/ ETHP 2040	Ogallala/ ETHP	Ogallala/ ETHP	Ogallala/ ETHP 2070	Dockum	Dockum	Dockum	Dockum	Dockum	Dockum
County	2020	2030	2040	2050	2000	2070	2020	2030	2040	2050	2000	20/0
ANDREWS	24,937	21,375	19,795	18,774	18,040	17,474	1,319	1,319	1,319	1,319	1,319	1,319
BORDEN	842	699	635	597	572	555	901	901	901	901	901	901
HOWARD	19,835	17,391	16,264	15,638	15,281	15,066	1,589	1,589	1,589	1,589	1,589	1,589
MARTIN	63,463	51,126	43,861	39,793	37,210	35,425	8	8	8	8	8	8

Note: Ogallala and Edwards Trinity (High Plains) are not differentiated in the GAM runs.

GMA-8 Brown County Trinity MAGs

Source: GAM RUN 17-029 MAG: MODELED AVAILABLE GROUNDWATER FOR THE TRINITY, WOODBINE, EDWARDS (BALCONES FAULT ZONE), MARBLE FALLS, ELLENBURGER-SAN SABA AND HICKORY AQUIFERS IN GROUNDWATER MANAGEMENT AREA 8

GMA-8 MAGs (by aquifer)

All values are in acre-feet per year

Trinity	Trinity	Trinity	Trinity	Trinity	Trinity						
(Travis	(Travis	(Travis	(Travis	(Travis	(Travis	Trinity	Trinity	Trinity	Trinity	Trinity	Trinity
Peak)	Peak)	Peak)	Peak)	Peak)	Peak)	(Hensell)	(Hensell)	(Hensell)	(Hensell)	(Hensell)	(Hensell)
2020	2030	2040	2050	2060	2070	2020	2030	2040	2050	2060	2070
395	394	395	394	395	394	4	4	4	4	4	4
Trinity	Taile in										
	Irinity	Trinity									
(Hosston)	(Hosston)	Trinity (Hosston)	Trinity (Hosston)	Trinity (Hosston)	Trinity (Hosston)	Trinity (Antlers)	Trinity (Antlers)	Trinity (Antlers)	Trinity (Antlers)	Trinity (Antlers)	Trinity (Antlers)
(Hosston) 2020	(Hosston) 2030	Trinity (Hosston) 2040	Trinity (Hosston) 2050	Trinity (Hosston) 2060	Trinity (Hosston) 2070	Trinity (Antlers) 2020	Trinity (Antlers) 2030	Trinity (Antlers) 2040	Trinity (Antlers) 2050	Trinity (Antlers) 2060	Trinity (Antlers) 2070

Note: (GMA-8 Trinity) The modeled available groundwater values estimated for counties may be slightly different from those estimated for groundwater conservation districts because of the process for rounding the values. The modeled available groundwater values for the longer leap years (2020, 2040, and 2060) are slightly higher than shorter non-leap years (2010, 2030, 2050, and 2070).

Ellenb	urger - El	llenburger - E	Ellenburger -	- Ellenburge	r - Ellenbu	rger - Ellent	ourger -
San	Saba S	San Saba	San Saba	San Saba	a San S	aba San	Saba
20	20	2030	2040	2050	206	0 20	070
13	31	131	131	131	131	1	31
							I .
	Marble	Marble	Marble	Marble	Marble	Marble	
	Falls	Falls	Falls	Falls	Falls	Falls	
	2020	2030	2040	2050	2060	2070	
	25	25	25	25	25	25	
	Hickorv	Hickory	Hickory	Hickorv	Hickorv	Hickorv	
	2020	2030	2040	2050	2060	2070	
	12	12	12	12	12	12	

GMA 3 and GMA 7 Desired Future Conditions and Modeled Available Groundwater

Bill Hutchison, Ph.D., P.E., P.G. Region F Meeting March 15, 2018

Topics

- Desired Future Conditions for GMAs 3 and 7
- Modeled Available Groundwater for GMAs 3 and 7

GMAs 3 and 7

- Two of 16 Groundwater Management Areas in Texas
 - TWDB delineated GMAs in 2002 as required in SB 2
- Districts within a GMA must adopt desired future conditions for relevant aquifers every five years
- GMA 3 has two confirmed districts
 7 Aquifers
- GMA 7 has 20 confirmed districts
 - 14 Aquifers

GMA 3

- 2 GCDs
- 7 Aquifers
- 29 GAM Runs
- 4 Meetings (2016 and 2017)
- 6 Explanatory Reports
- 8 Technical Memoranda
- Consultant Cost = \$17,400.00

GMA 3 Aquifers

- DFCs adopted
 - Capitan Reef Complex
 - Dockum
 - Edwards-Trinity (Plateau)
 - Pecos Valley
 - Rustler
- Not Relevant for Purposes of Joint Planning
 - Igneous
 - Ogallala

DFCs in GMA 3

- Proposed on April 26, 2016
- Final adoption on October 26, 2016
- DFCs for Edwards-Trinity (Plateau) and Pecos Valley aquifers revised on December 13, 2017
 TWDB identified issue with grid file used for calculation of average drawdowns

GMA 7

- 21 GCDs
- 14 Aquifers
- 35 GAM Runs
- 10 meetings (2014 to 2018)
- 5 Explanatory Reports
- 11 Technical Memoranda
- Consultant Cost = \$62,970.23

GMA 7 Aquifers

- DFCs adopted
 - Capitan Reef Complex
 - Dockum
 - Ellenburger-San Saba
 - Edwards-Trinity (Plateau)
 - Hickory
 - Ogallala
 - Pecos Valley
 - Rustler
 - Trinity

GMA 7 Aquifers

- Not Relevant for Purposes of Joint Planning
 - Blaine
 - Igneous
 - Lipan
 - Marble Falls
 - Seymour

DFCs in GMA 7

- Proposed on April 21, 2016
- Final adoption on September 22, 2016
 Dockum, Ellenburger-San Saba, Hickory, Ogallala, Rustler
- Final adoption on March 23, 2017
 - Capitan Reef Complex, Edwards-Trinity (Plateau), Pecos Valley, Trinity
- Revised final adoption scheduled for March 22, 2018
 - Edwards-Trinity (Plateau), Pecos Valley, Trinity
 - Issue with grid file used for calculation of average drawdowns (from GMA 3 review)

GMA 3 Modeled Available Groundwater

- TWDB GAM Run 16-027 MAG
- Issued March 14, 2018

GMA 3 – Capitan MAG

TABLE 2. MODELED AVAILABLE GROUNDWATER FOR THE CAPITAN REEF COMPLEX AQUIFER IN GROUNDWATER MANAGEMENT AREA 3 SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), AND RIVER BASIN FOR EACH DECADE BETWEEN 2020 AND 2070. VALUES ARE IN ACRE-FEET PER YEAR.

County	RWPA	River Basin	2020	2030	2040	2050	2060	2070
Pecos	F	Rio Grande	4	4	4	4	4	4
Ward	F	Rio Grande	103	103	103	103	103	103
Winkler	F	Rio Grande	274	274	274	274	274	274
Т	381	381	381	381	381	381		

GMA 3 – Dockum MAG

TABLE 4. MODELED AVAILABLE GROUNDWATER FOR THE DOCKUM AQUIFER IN GROUNDWATER MANAGEMENT AREA 3 SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), AND RIVER BASIN FOR EACH DECADE BETWEEN 2020 AND 2070. VALUES ARE IN ACRE-FEET PER YEAR.

County	RWPA	River Basin	2020	2030	2040	2050	2060	2070
Crane	F	Rio Grande	94	94	94	94	94	94
Loving	F	Rio Grande	453	453	453	453	453	453
Pecos	F	Rio Grande	6,142	6,142	6,142	6,142	6,142	6,142
Reeves	F	Rio Grande	2,539	2,539	2,539	2,539	2,539	2,539
Ward	F	Rio Grande	2,150	2,150	2,150	2,150	2,150	2,150
Winkler	F	Rio Grande	5,987	5,987	5,987	5,987	5,987	5,987
Winkler	F	Colorado	13	13	13	13	13	13
Total			17,378	17,378	17,378	17,378	17,378	17,378

GMA 3 – Edwards-Trinity (Plateau) and Pecos Valley MAG

TABLE 6. MODELED AVAILABLE GROUNDWATER FOR THE EDWARDS-TRINITY (PLATEAU) AND PECOS VALLEY AQUIFES IN GROUNDWATER MANAGEMENT AREA 3 SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), AND RIVER BASIN FOR EACH DECADE BETWEEN 2020 AND 2070. VALUES ARE IN ACRE-FEET PER YEAR.

County	RWPA	River Basin	2020	2030	2040	2050	2060	2070
Crane	F	Rio Grande	4,991	4,991	4,991	4,991	4,991	4,991
Loving	F	Rio Grande	2,982	2,982	2,982	2,982	2,982	2,982
Pecos	F	Rio Grande	122,899	122,899	122,899	122,899	122,899	122,899
Reeves	F	Rio Grande	189,744	189,744	189,744	189,744	189,744	189,744
Ward	F	Rio Grande	49,976	49,976	49,976	49,976	49,976	49,976
Winkler	F	Rio Grande	49,949	49,949	49,949	49,949	49,949	49,949
	Total			420,541	420,541	420,541	420,541	420,541

GMA 3 – Rustler MAG

TABLE 8. MODELED AVAILABLE GROUNDWATER FOR THE RUSTLER AQUIFER IN GROUNDWATER MANAGEMENT AREA 3 SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), AND RIVER BASIN FOR EACH DECADE BETWEEN 2020 AND 2070. VALUES ARE IN ACRE-FEET PER YEAR.

County	RWPA	River Basin	2020	2030	2040	2050	2060	2070
Loving	F	Rio Grande	200	200	200	200	200	200
Pecos	F	Rio Grande	Grande 3		3	3	3	3
Reeves	F	Rio Grande	2,387	2,387	2,387	2,387	2,387	2,387
Ward	F	Rio Grande	0	0	0	0	0	0
Т	2,590	2,590	2,590	2,590	2,590	2,590		

GMA 7 MAGs

- TWDB has not issued draft report yet
- Awaiting final adoption of revised DFCs
- Summaries in next slides are from Technical Memos that were developed
- Numbers could change as a result of TWDB evaluation

GMA 7 Capitan

- GMA 7 Technical Memorandum 16-03, Scenario
 4
- Pumping in Pecos County = 34,500 AF/yr

GMA 7 Dockum

- GMA 7 Technical Memorandum 16-01, Scenario
 17
- Pecos and Reagan Counties

Table 4. Summary of Scenario 17 Results - Dockum Aquifer

	Pecos	County	Reagar	n County	
Year	Pumping (AF/yr)	Drawdown (ft from 2012)	Pumping (AF/yr)	Drawdown (ft from 2012)	
2020	17,976	20	2,138	5	
2030	17,976	32	2,138	9	
2040	17,976	39	2,138	11	
2050	17,976	44	2,138	12	
2060	17,976	48	2,138	13	
2070	17,888	52	2,138	14	

GMA 7 Ellenburger-San Saba and Hickory

• GMA 7 Technical Memorandum 16-02, Scenario

Table 4. Summary of Pumping and Drawdown - Scenarios 1 to 5

3

				\frown		
			2011 to 20	070 Pumph	ıg(AF/yr)	
Aquifer	County	Scena rio	Scena rio	Scen ario	Scenario	Scenario
_		1	2	3	4	5
Marble Falls	San Saba	2,172	3,257	4,343	5,429	6,515
Ellenburger-San Saba	Gillespie	3,231	4,847	6,463	8,078	9,694
Ellenburger-San Saba	Kimble	267	401	535	669	802
Ellenburger-San Saba	Mason	1,932	2,898	3,863	4,829	5,795
Ellenburger-San Saba	McCulloch	2,246	3,369	4,492	5,615	6,738
Ellenburger-San Saba	Menard	155	232	309	387	464
Ellenburger-San Saba	SanSaba	4,195	6,293	8,391	10,488	12,586
Hickory	Concho	13	20	27	34	40
Hickory	Gillespie	907	1,360	1,814	2,267	2,721
Hickory	Kimble	83	124	165	207	248
Hickory	Llano	1,011	1,516	2,021	2,526	3,032
Hickory	Mason	7,533	11,299	15,066	.8,832	22,599
Hickory	McCulloch	17,034	20,751	24,468	28,185	31,902
Hickory	Menard	2,562	2,644	2,725	2,806	2,887
Hickory	SanSaba	3,875	5,813	7,751	9,688	11,626

GMA 7 Edwards-Trinity (Plateau), Pecos Valley, Trinity

Table 6. Pumping to Achieve the Drawdown (Proposed MAGs)

GMA 7 Technical Memorandum 18-01

Country	Pumping (AF/yr) by Decade									
County	2010	2020	2030	2040	2050	2060	2070			
Coke	997	997	997	997	997	997	997			
Crockett	5,447	5,447	5,447	5,447	5,447	5,447	5,447			
Ector	5,542	5,542	5,542	5,542	5,542	5,542	5,542			
Edwards	5,676	5,676	5,676	5,676	5,676	5,676	5,676			
Gillespie	4,979	4,979	4,979	4,979	4,979	4,979	4,979			
Glasscock	65,186	65,186	65,186	65,186	65,186	65,186	65,186			
Irion	3,289	3,289	3,289	3,289	3,289	3,289	3,289			
Kimble	1,387	1,387	1,387	1,387	1,387	1,387	1,387			
Menard	2,597	2,597	2,597	2,597	2,597	2,597	2,597			
Midland	23,232	23,232	23,232	23,232	23,232	23,232	23,232			
Pecos (GMA 7)	117,309	117,309	117,309	117,309	117,309	117,309	117,309			
Reagan	68,233	68,233	68,233	68,233	68,233	68,233	68,233			
Real	7,524	7,524	7,524	7,524	7,524	7,524	7,524			
Schelicher	8,034	8,034	8,034	8,034	8,034	8,034	8,034			
Sterling	2,495	2,495	2,495	2,495	2,495	2,495	2,495			
Sutton	6,411	6,411	6,411	6,411	6,411	6,411	6,411			
Taylor	489	489	489	489	489	489	489			
Terrell	1,420	1,420	1,420	1,420	1,420	1,420	1,420			
Upton	22,369	22,369	22,369	22,369	22,369	22,369	22,369			
Uvalde	1,998	1,998	1,998	1,998	1,998	1,998	1,998			

GMA 7 Edwards-Trinity (Plateau) for Kinney County

- Based on different model (Kinney County Model) for spring flow based DFC
- No change from 2010 DFC expected (TWDB GAM Run 10-043 MAG, Version 2, 11/12/2012)
- MAG = 70,338 AF/yr for all decades

GMA 7 Edwards-Trinity (Plateau) for Val Verde County

- Based on different model (Val Verde County Model) for spring flow based DFC
- Adopted DFC for average San Felipe Spring flow between 73 and 75 cfs
 - Range is based on different assumed pumping locations of "50K" pumping scenario
- Pumping assumed is 50,000 AF/yr

GMA 7 Ogallala

- GMA 7 Technical Memorandum 16-01, Scenario 10
- Acknowledges that pumping rates will decline as a result of decreasing saturated thickness
- Applies only to Glasscock County
 - 2012 Pumping: 5,346 AF/yr (last year of calibrated model)
 - 2013 Pumping: 8,019 AF/yr (initial year of simulation)
 - 2070 Pumping: 6,577 AF/yr (final year of simulation)

GMA 7 Rustler

GMA 7 Technical Memorandum 15-05, Scenario
 4

	Table 5. Summary of Pumping for Initial Scenarios											
					$ \land $							
_					Scenario							
County	1	2	3		4	5	6	7				
Loving	140	160	180		200	220	240	260				
Pecos(GMA3)	2	2	3		3	3	4	4				
Pecos(GMA7)	4,929	5,634	6,338		7,042	7,746	8,450	9,155				
Reeves	1,671	1,910	2,148		2,387	2,626	2,864	3,103				
Ward	0	0	0		0	0	0	0				
Total	6,742	7,706	8,669		9,632	10,595	11,558	12,522				

Draft MAG Differences (2016 vs. 2021)

Minor Changes

- Edwards-Trinity (Plateau), Pecos Valley, Trinity
- Dockum
- Rustler
- Ellenburger-San Saba
- Significant Changes
 - Capitan Reef
 - Hickory
 - San Angelo McCulloch County Well Field

Capitan

GMA3 Capitan Total MAG

Hickory

GMA7 HickoryTotal MAG

McCulloch County (Hickory)

GMA7 McCulloch County MAG

Questions and Discussion

Bill Hutchison, Ph.D., P.E., P.G.

billhutch@texasgw.com

512-745-0599

CONSIDER REQUESTING EXTENSION OF TIME FOR REGION F TO SUBMIT THE TECH MEMO TO THE TWDB

PRESENTATION AND DISCUSSION

From TAC 357.12b

"A RWPG shall hold a public meeting to determine the process for identifying potentially feasible water management strategies; the process shall be documented and shall include input received at a public meeting; ..."

Identification Process

- 1. Identify entities with needs
- 2. Review recommended strategies in 2016 plan
- 3. Review new studies/reports
- 4. Identify potential new or changed strategies
- 5. Review strategy types appropriate for Region F 6. Contact entity for input
- 7. Contact RWPG representative for county-wide WUGs
- 8. Verify recommendations

Seek Input -----> Identify PF WMSs

Evaluate WMSs

Quantity, Cost, and Reliability Environmental Factors Impacts Other Relevant Considerations

Seek Input

Recommended WMS

Alternative WMS Considered & Not Selected WMS

Feasible Strategies

Considerations

- A strategy must use proven technology
- A strategy should have an identifiable sponsor
- Must consider end use. Includes water quality, economics, geographic constraints, etc.
- Must meet existing regulations

Feasible Strategies by Type

- 24 Water Management Strategy Types required to consider by TWDB
 - Not all are applicable to every situation
 - Not all are applicable to Region F

Feasible Strategies by Type

- Strategy Types *Likely* Not Appropriate for Region F
 - Drought Management (not a long-term supply strategy)
 - New Surface Water Supplies
 - Enhancement of Yields
- Strategy Types Not Appropriate for Region F
 - Marine Seawater Desalination
 - Cancellation of Water Rights
 - Rainwater Harvesting

PUBLIC COMMENTS ON DRAFT METHODOLOGY TO IDENTIFY OF POTENTIALLY FEASIBLE WATER MANAGEMENT STRATEGIES

CONSIDER ADOPTION OF METHODOLOGY TO IDENTIFY POTENTIALLY FEASIBLE WATER MANAGEMENT STRATEGIES

CONSIDER APPROVING A PARTIAL SCOPE OF WORK FOR TASK 5A AND AUTHORIZE THE DESIGNATED POLITICAL SUBDIVISION TO SUBMIT A REQUEST TO THE TWDB FOR A **NOTICE-TO-PROCEED WITH THE** PARTIAL SCOPE OF WORK FOR TASK **5A AND EXECUTE ANY REQUIRED CONTRACT AMENDMENTS**

